Home

helps physicians and healthcare professionals

Erectile Dysfunction

helps physicians and healthcare professionals

Doctor123.org

helps physicians and healthcare professionals

Pravastatin


General


Pronunciation

(prav a STAT in)


Brand Names: U.S.

  • Pravachol

Indications


Use: Labeled Indications

Hyperlipidemia

Dysbetalipoproteinemia: Treatment of primary dysbetalipoproteinemia (Fredrickson type III) in patients who do not respond adequately to diet.

Heterozygous familial hypercholesterolemia: Adjunct to diet in children ≥8 years and adolescents with heterozygous familial hypercholesterolemia (HeFH) if after an adequate trial of diet therapy the following findings are present: LDL-C ≥190 mg/dL or LDL ≥160 mg/dL with positive family history of premature cardiovascular disease (CVD), or with 2 or more other CVD risk factors.

Hypercholesterolemia and mixed dyslipidemia: Adjunct to diet to reduce elevated total cholesterol, LDL-C, apo B, and triglyceride (TG) levels and to increase HDL-C in patients with primary hypercholesterolemia and mixed dyslipidemia (Fredrickson Types IIa and IIb).

Limitations of use: Has not been studied in conditions where the major lipid abnormality is elevation of chylomicrons (Fredrickson types I and V).

Prevention of cardiovascular disease

Primary prevention of cardiovascular disease: To reduce the risk of myocardial infarction, revascularization procedures and cardiovascular mortality in hypercholesterolemic patients without established coronary heart disease (CHD).

Secondary prevention of cardiovascular disease: To slow the progression of coronary atherosclerosis; to reduce the risk of myocardial infarction, revascularization procedures, and total mortality; and to reduce the risk of stroke and transient ischemic attacks (TIA) in patients with established CHD.

Primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD) according to the American College of Cardiology/American Heart Association: To reduce the risk of ASCVD in patients with clinical ASCVD (eg, coronary heart disease, stroke/TIA, or peripheral arterial disease presumed to be of atherosclerotic origin) who are greater than 75 years of age or not a candidate for high-intensity statin therapy; in patients without clinical ASCVD if LDL-C is 190 mg/dL or greater and not a candidate for high-intensity statin therapy; in patients without clinical ASCVD who have type 1 or type 2 diabetes and are between 40 and 75 years of age; in patients with an estimated 10-year ASCVD risk 7.5% or greater and who are between 40 and 75 years of age (Stone 2013). The American Heart Association (AHA) recommends statin therapy (unless contraindicated) for all coronary artery bypass graft (CABG) surgery patients to help maintain long-term graft patency and help obtain the highest level of physical health and quality of life (AHA [Kulik 2015]). Specific recommendations from the Kidney Disease: Improving Global Outcomes (KDIGO) organization have also been released for patients with chronic kidney disease (KDIGO [Tonelli 2013]).


Contraindications


Hypersensitivity to pravastatin or any component of the formulation; active liver disease; unexplained persistent elevations of serum transaminases; pregnancy; breast-feeding


Dosing and Administration


Dosing: Adult

Note: Doses should be individualized according to the baseline LDL-cholesterol levels, the recommended goal of therapy, and patient response; adjustments should be made at intervals of 4 weeks or more; doses may need adjusted based on concomitant medications.

Hyperlipidemias, primary prevention of coronary events, secondary prevention of cardiovascular events (also see ACC/AHA Blood Cholesterol Guideline recommendations): Oral: Initial: 40 mg once daily; titrate dosage to response (maximum dose: 80 mg/day)

Prevention of cardiovascular disease: ACC/AHA Blood Cholesterol Guideline recommendations to reduce the risk of atherosclerotic cardiovascular disease (ASCVD) (Stone 2013): Adults ≥21 years: Oral:

Primary prevention:

LDL-C ≥190 mg/dL: High intensity therapy necessary; use alternate statin therapy (eg, atorvastatin or rosuvastatin)

Type 1 or 2 diabetes and age 40 to 75 years: Moderate intensity therapy: 40 to 80 mg once daily

Type 1 or 2 diabetes, age 40 to 75 years, and an estimated 10-year ASCVD risk ≥7.5%: High intensity therapy necessary; use alternate statin therapy (eg, atorvastatin or rosuvastatin)

Age 40 to 75 years and an estimated 10-year ASCVD risk ≥7.5%: Moderate to high intensity therapy: 40 to 80 mg once daily or consider using high intensity statin therapy (eg, atorvastatin or rosuvastatin)

Secondary prevention:

Patient has clinical ASCVD (eg, coronary heart disease, stroke/TIA, or peripheral arterial disease presumed to be of atherosclerotic origin) or is post-CABG (AHA [Kulik 2015]) and:

Age ≤75 years: High intensity therapy necessary; use alternate statin therapy (eg, atorvastatin or rosuvastatin)

Age >75 years or not a candidate for high intensity therapy: Moderate intensity therapy: 40 to 80 mg once daily

Dosage adjustment for pravastatin with concomitant medications:

Clarithromycin: Maximum pravastatin dose: 40 mg/day.

Cyclosporine: Initial pravastatin dose: 10 mg once daily, titrate with caution (maximum dose: 20 mg/day)


Dosing: Geriatric

Refer to adult dosing.


Dosing: Pediatric

Heterozygous familial hypercholesterolemia (HeFH): Oral:

Children and Adolescents 8 to 13 years: 20 mg once daily

Adolescents 14 to 18 years: 40 mg once daily

Dosage adjustment for pravastatin with concomitant medications (clarithromycin, cyclosporine): Refer to adult dosing.

Note: Doses should be individualized according to the baseline LDL-cholesterol levels, the recommended goal of therapy, and patient response; adjustments should be made at intervals of 4 weeks or more; doses may need adjusted based on concomitant medications.


Dosing: Renal Impairment

Mild to moderate impairment: There are no dosage adjustments provided in the manufacturer 's labeling; use with caution.

Severe impairment: Initial: 10 mg once daily


Dosing: Hepatic Impairment

Active hepatic disease or unexplained persistent elevations of serum transaminases: Use is contraindicated.

History of significant hepatic impairment: Initial: 10 mg once daily [Canadian product labeling]


Administration

Administer without regard to meals.


Dietary Considerations

Before initiation of therapy, patients should be placed on a standard cholesterol-lowering diet for 6 weeks and the diet should be continued during drug therapy.

Red yeast rice contains variable amounts of several compounds that are structurally similar to HMG-CoA reductase inhibitors, primarily monacolin K (or mevinolin) which is structurally identical to lovastatin; concurrent use of red yeast rice with HMG-CoA reductase inhibitors may increase the incidence of adverse and toxic effects (Lapi 2008; Smith 2003).


Storage

Store at 25 ‚ °C (77 ‚ °F); excursions permitted to 15 ‚ °C to 30 ‚ °C (59 ‚ °F to 86 ‚ °F). Protect from light.


Dosage Forms/Strengths


Dosage Forms

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral, as sodium:

Pravachol: 20 mg

Pravachol: 40 mg [contains fd&c blue #1 aluminum lake, fd&c yellow #10 aluminum lake]

Pravachol: 80 mg

Generic: 10 mg, 20 mg, 40 mg, 80 mg


Drug Interactions

Acipimox: May enhance the myopathic (rhabdomyolysis) effect of HMG-CoA Reductase Inhibitors. Monitor therapy

Antacids: May decrease the serum concentration of HMG-CoA Reductase Inhibitors. Monitor therapy

Antihepaciviral Combination Products: May increase the serum concentration of Pravastatin. Management: Limit the pravastatin dose to a maximum of 40 mg per day when used with antihepaciviral combination products and monitor patients for evidence of pravastatin toxicities (eg, myopathy). Consider therapy modification

Asunaprevir: May increase the serum concentration of HMG-CoA Reductase Inhibitors. Monitor therapy

Bezafibrate: May enhance the myopathic (rhabdomyolysis) effect of HMG-CoA Reductase Inhibitors. Bezafibrate may increase the serum concentration of HMG-CoA Reductase Inhibitors. More specifically, bezafibrate may increase the serum concentration of fluvastatin Management: Monitor patients closely for myopathy with concomitant use of bezafibrate and HMG-CoA reductase inhibitors. Concomitant use is contraindicated in patients predisposed to myopathy and alternative therapy should be considered. Consider therapy modification

Bile Acid Sequestrants: May decrease the serum concentration of Pravastatin. Management: Administer pravastatin at least 1 hour before or 4 hours after administration of bile-acid resins (eg, cholestyramine, colestipol, colesevelam) to minimize the risk for any significant interaction. Consider therapy modification

Boceprevir: May increase the serum concentration of Pravastatin. Monitor therapy

Ciprofibrate: May enhance the adverse/toxic effect of HMG-CoA Reductase Inhibitors. Management: Avoid the use of HMG-CoA reductase inhibitors and ciprofibrate if possible. If concomitant therapy is considered, benefits should be carefully weighed against the risks, and patients should be monitored closely for signs/symptoms of muscle toxicity. Consider therapy modification

Clarithromycin: May increase the serum concentration of Pravastatin. Management: Limit pravastatin to a maximum of 40 mg/day (for adults) when used in combination with clarithromycin. If this combination is used, monitor patients more closely for evidence of pravastatin toxicity. Consider therapy modification

Colchicine: May enhance the myopathic (rhabdomyolysis) effect of HMG-CoA Reductase Inhibitors. Colchicine may increase the serum concentration of HMG-CoA Reductase Inhibitors. Consider therapy modification

CycloSPORINE (Systemic): May increase the serum concentration of Pravastatin. Pravastatin may increase the serum concentration of CycloSPORINE (Systemic). Management: Limit pravastatin to 20 mg/day in patients who are also receiving cyclosporine. Consider therapy modification

Daclatasvir: May increase the serum concentration of HMG-CoA Reductase Inhibitors. Monitor therapy

DAPTOmycin: HMG-CoA Reductase Inhibitors may enhance the adverse/toxic effect of DAPTOmycin. Specifically, the risk of skeletal muscle toxicity may be increased. Management: Consider temporarily stopping HMG-CoA reductase inhibitor therapy prior to daptomycin. If used together, regular (i.e., at least weekly) monitoring of CPK concentrations is recommended. Consider therapy modification

Darunavir: May increase the serum concentration of Pravastatin. This effect has only been demonstrated with darunavir/ritonavir. The individual contributions of darunavir and ritonavir are unknown. Monitor therapy

Efavirenz: May decrease the serum concentration of Pravastatin. Monitor therapy

Eltrombopag: May increase the serum concentration of OATP1B1/SLCO1B1 Substrates. Monitor therapy

Erythromycin (Systemic): May increase the serum concentration of Pravastatin. Monitor therapy

Fenofibrate and Derivatives: May enhance the adverse/toxic effect of HMG-CoA Reductase Inhibitors. Monitor therapy

Fosphenytoin: May decrease the serum concentration of HMG-CoA Reductase Inhibitors. Consider therapy modification

Fusidic Acid (Systemic): May enhance the adverse/toxic effect of HMG-CoA Reductase Inhibitors. Specifically, the risk for muscle toxicities, including rhabdomyolysis may be significantly increased. Management: Avoid concurrent use whenever possible. Use is listed as contraindicated in product characteristic summaries in several countries, although UK labeling suggests that use could be considered under exceptional circumstances and with close supervision. Avoid combination

Gemfibrozil: May enhance the myopathic (rhabdomyolysis) effect of Pravastatin. Gemfibrozil may increase the serum concentration of Pravastatin. Avoid combination

Itraconazole: May increase the serum concentration of Pravastatin. Monitor therapy

Lanthanum: HMG-CoA Reductase Inhibitors may decrease the serum concentration of Lanthanum. Management: Administer HMG-CoA reductase inhibitors at least two hours before or after lanthanum. Consider therapy modification

Nelfinavir: May decrease the serum concentration of Pravastatin. Monitor therapy

Niacin: May enhance the adverse/toxic effect of HMG-CoA Reductase Inhibitors. Monitor therapy

Niacinamide: May enhance the adverse/toxic effect of HMG-CoA Reductase Inhibitors. Monitor therapy

PARoxetine: Pravastatin may enhance the adverse/toxic effect of PARoxetine. Specifically, blood glucose elevations may occur with the combination. Monitor therapy

PAZOPanib: HMG-CoA Reductase Inhibitors may enhance the hepatotoxic effect of PAZOPanib. Specifically, the risk for increased serum transaminase concentrations may be increased. Management: Simvastatin is specifically implicated in the interaction. There is a lack of data regarding risk with other statins, but caution appears warranted with any statins. Atorvastatin should be avoided due to P-gp inhibition. Monitor therapy

Phenytoin: May decrease the serum concentration of HMG-CoA Reductase Inhibitors. Consider therapy modification

Raltegravir: May enhance the myopathic (rhabdomyolysis) effect of HMG-CoA Reductase Inhibitors. Monitor therapy

Red Yeast Rice: May enhance the adverse/toxic effect of HMG-CoA Reductase Inhibitors. Avoid combination

Rifamycin Derivatives: May decrease the serum concentration of HMG-CoA Reductase Inhibitors. Management: Consider use of noninteracting antilipemic agents (note: pitavastatin concentrations may increase with rifamycin treatment). Monitor for altered HMG-CoA reductase inhibitor effects. Rifabutin and fluvastatin, or possibly pravastatin, may pose lower risk. Consider therapy modification

Saquinavir: May decrease the serum concentration of Pravastatin. This effect has only been demonstrated with saquinavir/ritonavir. The individual contributions of saquinavir and ritonavir are unknown. Monitor therapy

Simeprevir: May increase the serum concentration of Pravastatin. Monitor therapy

Telaprevir: May increase the serum concentration of Pravastatin. Monitor therapy

Telithromycin: May increase the serum concentration of Pravastatin. Monitor therapy

Teriflunomide: May increase the serum concentration of OATP1B1/SLCO1B1 Substrates. Monitor therapy

Trabectedin: HMG-CoA Reductase Inhibitors may enhance the myopathic (rhabdomyolysis) effect of Trabectedin. Monitor therapy

Vitamin K Antagonists (eg, warfarin): HMG-CoA Reductase Inhibitors may enhance the anticoagulant effect of Vitamin K Antagonists. Monitor therapy


Monitoring Parameters

2013 ACC/AHA Blood Cholesterol Guideline recommendations (Stone 2013):

Lipid panel (total cholesterol, HDL, LDL, triglycerides): Baseline lipid panel; fasting lipid profile within 4-12 weeks after initiation or dose adjustment and every 3-12 months (as clinically indicated) thereafter. If 2 consecutive LDL levels are <40 mg/dL, consider decreasing the dose.

Hepatic transaminase levels: Baseline measurement of hepatic transaminase levels (ie, ALT); measure hepatic function if symptoms suggest hepatotoxicity (eg, unusual fatigue or weakness, loss of appetite, abdominal pain, dark-colored urine or yellowing of skin or sclera) during therapy.

CPK: CPK should not be routinely measured. Baseline CPK measurement is reasonable for some individuals (eg, family history of statin intolerance or muscle disease, clinical presentation, concomitant drug therapy that may increase risk of myopathy). May measure CPK in any patient with symptoms suggestive of myopathy (pain, tenderness, stiffness, cramping, weakness, or generalized fatigue).

Evaluate for new-onset diabetes mellitus during therapy; if diabetes develops, continue statin therapy and encourage adherence to a heart-healthy diet, physical activity, a healthy body weight, and tobacco cessation.

If patient develops a confusional state or memory impairment, may evaluate patient for nonstatin causes (eg, exposure to other drugs), systemic and neuropsychiatric causes, and the possibility of adverse effects associated with statin therapy.

Manufacturers labeling: Liver enzyme tests at baseline and repeated when clinically indicated. Upon initiation or titration, lipid panel should be analyzed at intervals of 4 weeks or more.


Adverse Reactions


As reported in short-term trials; safety and tolerability with long-term use were similar to placebo

1% to 10%:

Cardiovascular: Chest pain (4%)

Central nervous system: Headache (2% to 6%), fatigue (4%), dizziness (1% to 3%)

Dermatologic: Rash (4%)

Gastrointestinal: Nausea/vomiting (7%), diarrhea (6%), heartburn (3%)

Genitourinary: Cystitis (interstitial; Huang 2015)

Hepatic: Increased transaminases (>3x normal on two occasions: 1%)

Neuromuscular & skeletal: Myalgia (2%)

Respiratory: Cough (3%)

Miscellaneous: Influenza (2%)

<1% (Limited to important or life-threatening): Allergy, amnesia (reversible), anaphylaxis, angioedema, cholestatic jaundice, cirrhosis, cognitive impairment (reversible), confusion (reversible), cranial nerve dysfunction, dermatomyositis, erythema multiforme, ESR increase, fulminant hepatic necrosis, gynecomastia, hemolytic anemia, hepatitis, hepatoma, lens opacity, libido change, lupus erythematosus-like syndrome, memory disturbance (reversible), memory impairment (reversible), muscle weakness, myopathy, neuropathy, pancreatitis, paresthesia, peripheral nerve palsy, polymyalgia rheumatica, positive ANA, purpura, rhabdomyolysis, Stevens-Johnson syndrome, taste disturbance, tremor, vasculitis, vertigo

Additional class-related events or case reports (not necessarily reported with pravastatin therapy): Angioedema, cataracts, depression, diabetes mellitus (new onset), dyspnea, eosinophilia, erectile dysfunction, facial paresis, hypersensitivity reaction, immune-mediated necrotizing myopathy (IMNM), impaired extraocular muscle movement, impotence, increased blood glucose, increased glycosylated hemoglobin (HbA1c), increased transaminases, interstitial lung disease, leukopenia, malaise, memory loss, ophthalmoplegia, paresthesia, peripheral neuropathy, photosensitivity, psychic disturbance, skin discoloration, thrombocytopenia, thyroid dysfunction, toxic epidermal necrolysis, vomiting


Warnings/Precautions


Special Populations: Elderly

Mean AUC was approximately 27% greater and mean cumulative urinary excretion was approximately 19% lower in elderly men. Mean AUC was approximately 46%higher and mean cumulative urinary excretion was approximately 18% lower in elderly women.


Warnings/Precautions

Concerns related to adverse effects:

- Diabetes mellitus: Increases in HbA1c and fasting blood glucose have been reported with HMG-CoA reductase inhibitors; however, the benefits of statin therapy far outweigh the risk of dysglycemia.

- Endocrine effects: Reduced cholesterol synthesis as a result of therapy could theoretically lead to reduced adrenal or gonadal steroid hormone production; clinical trial data is inconsistent in regards to the effect on basal steroid hormone levels. Patients with signs/symptoms of endocrine dysfunction should be evaluated as clinically indicated; use caution with concomitant medications (eg, spironolactone, cimetidine, ketoconazole) that may reduce steroid hormone levels/activity.

- Hepatotoxicity: Postmarketing reports of fatal and nonfatal hepatic failure are rare. If serious hepatotoxicity with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment, interrupt therapy. If an alternate etiology is not identified, do not restart pravastatin. Liver enzyme tests should be obtained at baseline and as clinically indicated; routine periodic monitoring of liver enzymes is not necessary. Ethanol may enhance the potential of adverse hepatic effects; instruct patients to avoid excessive ethanol consumption.

- Immune-mediated necrotizing myopathy (IMNM): IMNM, an autoimmune-mediated myopathy, has been reported (rarely) with HMG-CoA reductase inhibitor therapy. IMNM presents as proximal muscle weakness with elevated CPK levels, which persists despite discontinuation of HMG-CoA reductase inhibitor therapy; additionally, muscle biopsy may show necrotizing myopathy with limited inflammation. Immunosuppressive therapy (eg, corticosteroids, azathioprine) may be used for treatment.

- Myopathy/rhabdomyolysis: Rhabdomyolysis with acute renal failure secondary to myoglobinuria and/or myopathy have been reported; patients should be monitored closely. This risk is dose-related and is increased with concurrent use of erythromycin, cyclosporine, fibric acid derivatives (eg, gemfibrozil), or niacin (doses ≥1 g/day). Temporarily withhold therapy in patients experiencing conditions predisposing to the development of renal failure secondary to rhabdomyolysis (eg, sepsis, hypotension, major surgery, trauma, uncontrolled epilepsy; severe metabolic, endocrine, or electrolyte disorders). Discontinue therapy in any patient in which CPK levels are markedly elevated (>10 times ULN) or if myopathy is suspected/diagnosed. Use caution in patients with inadequately treated hypothyroidism, and those taking other drugs associated with myopathy (eg, colchicine); these patients are predisposed to myopathy. Patients should be instructed to report unexplained muscle pain, tenderness, weakness, or brown urine.

Disease-related concerns:

- Hepatic impairment and/or ethanol use: Use with caution in patients who consume large amounts of ethanol or have a history of liver disease. Use is contraindicated in patients with active liver disease or unexplained transaminase elevations.

- Renal impairment: Use with caution in patients with renal impairment; these patients are predisposed to myopathy.

Concurrent drug therapy issues:

- Drug-drug interactions: Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy. Consult drug interactions database for more detailed information.

Special Populations:

- Elderly: Use with caution in patients with advanced age, these patients are predisposed to myopathy.

- Surgical patients: The manufacturer recommends temporary discontinuation for elective major surgery, acute medical or surgical conditions, or in any patient experiencing an acute or serious condition predisposing to renal failure (eg, sepsis, hypotension, trauma, uncontrolled seizures). Based on current research and clinical guidelines (Fleisher 2009), HMG-CoA reductase inhibitors should be continued in the perioperative period. Postoperative discontinuation of statin therapy is associated with an increased risk of cardiac morbidity and mortality.

Other warnings/precautions:

- Appropriate use: Has not been studied in homozygous familial hypercholesterolemia (statins may be less effective due to lack of functional LDL receptors).

- Hyperlipidemia: Secondary causes of hyperlipidemia should be ruled out prior to therapy.


Pregnancy Risk Factor

X


Pregnancy Considerations

Adverse events were observed in some animal reproduction studies. Pravastatin was found to cross the placenta in an ex vivo study using term human placentas (Nanovskaya 2013). There are reports of congenital anomalies following maternal use of HMG-CoA reductase inhibitors in pregnancy; however, maternal disease, differences in specific agents used, and the low rates of exposure limit the interpretation of the available data (Godfrey 2012; Lecarpentier 2012). Cholesterol biosynthesis may be important in fetal development; serum cholesterol and triglycerides increase normally during pregnancy. The discontinuation of lipid lowering medications temporarily during pregnancy is not expected to have significant impact on the long term outcomes of primary hypercholesterolemia treatment.

Use of pravastatin is contraindicated in pregnancy. HMG-CoA reductase Inhibitors should be discontinued prior to pregnancy (ADA 2013). If treatment of dyslipidemias is needed in pregnant women or in women of reproductive age, other agents are preferred (Berglund 2012; Stone 2013). The manufacturer recommends administration to women of childbearing potential only when conception is highly unlikely and patients have been informed of potential hazards.


Actions


Pharmacology

Pravastatin is a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is the rate-limiting enzyme involved in de novo cholesterol synthesis. In addition to the ability of HMG-CoA reductase inhibitors to decrease levels of high-sensitivity C-reactive protein (hsCRP), they also possess pleiotropic properties including improved endothelial function, reduced inflammation at the site of the coronary plaque, inhibition of platelet aggregation, and anticoagulant effects (de Denus 2002; Ray 2005).


Absorption

Rapidly absorbed; average absorption 34%


Distribution

Vd: 0.46 L/kg


Metabolism

Hepatic multiple metabolites; primary metabolite is 3 alpha-hydroxy-iso-pravastatin (2.5% to 10% activity of parent drug); extensive first-pass metabolism


Excretion

Feces (70%); urine (~20%, 8% as unchanged drug)


Onset of Action

Several days; Peak effect: 4 weeks; LDL-reduction: 40 mg/day: 34% (for each doubling of this dose, LDL-C is lowered by ~6%)


Time to Peak

Serum: 1-1.5 hours


Half-Life Elimination

Children and Adolescents (4.9-15.6 years): 1.6 hours; range: 0.85 to 4.2 hours (Hedman 2003)

Adults: 77 hours (including all metabolites); Pravastatin: ~2 to 3 hours (Pan 1990); 3 alpha hydroxy-iso-pravastatin: ~1.5 hours (Gustavson 2005)


Protein Binding

~50%


Patient and Family Education


Patient Education

- Discuss specific use of drug and side effects with patient as it relates to treatment. (HCAHPS: During this hospital stay, were you given any medicine that you had not taken before? Before giving you any new medicine, how often did hospital staff tell you what the medicine was for? How often did hospital staff describe possible side effects in a way you could understand?)

- Patient may experience headache, dizziness, loss of strength and energy, diarrhea, nausea, vomiting, rhinitis, pharyngitis, cough, or rhinorrhea. Have patient report immediately to prescriber signs of liver problems (dark urine, feeling tired, lack of appetite, nausea, abdominal pain, light-colored stools, vomiting, or yellow skin or eyes), angina, vision changes, urinary retention, change in amount of urine passed, muscle pain, muscle tenderness, or muscle weakness (HCAHPS).

- Educate patient about signs of a significant reaction (eg, wheezing; chest tightness; fever; itching; bad cough; blue skin color; seizures; or swelling of face, lips, tongue, or throat). Note: This is not a comprehensive list of all side effects. Patient should consult prescriber for additional questions.

Intended Use and Disclaimer: Should not be printed and given to patients. This information is intended to serve as a concise initial reference for health care professionals to use when discussing medications with a patient. You must ultimately rely on your own discretion, experience, and judgment in diagnosing, treating, and advising patients.

Copyright © 2016 - 2017
Doctor123.org | Disclaimer